New paper on a 2D collisional abrasion model

A Geometrically Motivated Two-Dimensional Collisional Abrasion Model to Resolve the Evolution of Natural Fragment Shapes
Balázs Havasi-Tóth, Eszter Fehér.

Abstract: In the present paper we propose a geometrically motivated mathematical model, which reveals the key features of natural coastal and fluvial fragment shape evolution from the earliest stages of the abrasion. Our collisional polygon model governs the evolution through an ordinary differential equation (ODE), which determines the rounding rate of initially sharp corners in the function of the size reduction of the fragment. As an approximation, the basic structure of our model adopts the concept of Bloore’s partial differential equation (PDE) in terms of the curvature-dependent local collisional frequency. We tested our model under various conditions and made comparisons with the predictions of Bloore’s PDE. Moreover, we applied the model to discover and quantify the mathematical conditions corresponding to typical and special shape evolution. By further extending our model to investigate the self-dual and mixed cases, we outline a possible explanation of the long-term preservation of initial pebble shape characteristics.

Institutional Scientific Students’ Associations Conference 2024

This year’s Institutional Scientific Students’ Associations Conference at the Budapest University of Technology and Economics was notably successful for the HUN-REN Research Group of Morphodynamics: four students of the group were among the winners of different prizes:
Continue Reading “Institutional Scientific Students’ Associations Conference 2024”

Lectures for high school students

A series of scientific informative lectures for interested high school students has been organized by the HUN-REN Morphodynamics Research Group.

  • Kocsis Kinga: Ezer tonna márvány, avagy tér-idő utazás Michelangelo kőtömbjeihez (A thousand ton of marble or a time-space travel to the stones of Michelangelo)
  • Szondi Máté: Alakevolúciós egyenlet használata membránfelületek számítására (Application of shape evolution equations for calculating membrane surfaces)
  • Regős Krisztina: A diszkrét Gömböc nyomában (In the wake of a discrete Gömböc)
    (Lovassy László High School, Veszprém, 8 December, 2023)
  • Almádi Gergő: Tetraéderek egyensúlyairól (On equilibria of tetrahedra)
  • Nagy Klaudia: Falak geometriája (The geometry of walls)
  • Regős Krisztina: A diszkrét Gömböc nyomában (In the wake of a discrete Gömböc)
    (Deák Ferenc High School, Budapest, 23 January, 2024) Link
  • Regős Krisztina: A diszkrét Gömböc nyomában (In the wake of a discrete Gömböc)
  • Ferencz Eszter: Repedéshálózatok időfejlődése, avagy a Gilbert-piaffe (Time evolution of crack networks or the Gilbert piaffe)
  • Kocsis Kinga: Ezer tonna márvány, avagy tér-idő utazás Michelangelo kőtömbjeihez (A thousand ton of marble or a time-space travel to the stones of Michelangelo)
    (Árpád High School, Budapest, 27 March, 2024)
  • Almádi Gergő – Regős Krisztina: A diszkrét Gömböc nyomában (In the wake of a discrete Gömböc)
    (Teleki Blanka High School, Budapest, 23 April, 2024)
  • Domokos Gábor: A láthatatlan kocka (The invisible cube)
    (Teleki Blanka High School, Székesfehérvár, 20 June, 2024)
  • Domokos Gábor: Kemény sziklák és lágy cellák (Hard rocks and soft cells)
  • Almádi Gergő: Repedéshálózatok időfejlődése, avagy a Gilbert-piaffe (Time evolution of crack networks or the Gilbert piaffe)
  • Regős Krisztina: A diszkrét Gömböc nyomában (In the wake of a discrete Gömböc)
  • Szondi Máté: Adhat-e ötletet a természetes kopás a héjszerkezetek tervzéséhez? (Can natural abrasion inspire the design of membrane structures?)
    (Camp of Mathematics, organized by the Trefort Ágoston High School of Budapest, Visegrád, 19 October, 2024)